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David Sherman1,2, Isabelle Dutour1,2 and Antoine de Daruvar1,*
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ABSTRACT

The combination of sequencing and post-sequencing
experimental approaches produces huge collections
of data that are highly heterogeneous both in struc-
ture and in semantics. We propose a new strategy for
the integration of such data. This strategy uses struc-
tured sets of sequences as a unified representation of
biological information and defines a probabilistic
measure of similarity between the sets. Sets can be
composed of sequences that are known to have a bio-
logical relationship (e.g. proteins involved in a com-
plex or a pathway) or that share similar values for a
particular attribute (e.g. expression profile). We have
developed a software, BlastSets, which implements
this strategy. It exploits a database where the sets
derived from diverse biological information can be
deposited using a standard XML format. For a given
query set, BlastSets returns target sets found in the
database whose similarity to the query is statistically
significant. The tool allowed us to automatically iden-
tify verified relationships between correlated expres-
sion profiles and biological pathways using publicly
available data for Saccharomyces cerevisiae. It was
also used to retrieve the members of a complex (ribo-
some) based on the mining of expression profiles.
These first results validate the relevance of the
strategy and demonstrate the promising potential
of BlastSets.

INTRODUCTION

Cellular functions result from molecular mechanisms that
are individually studied using a combination of sequencing
and post-sequencing experimental approaches. Understanding
the tight coupling between these mechanisms at a cellular scale
requires efficient methods and tools for integrating a huge
collection of highly heterogeneous data. These data, diverse

both in structure and in semantics, include functional and
structural sequence annotations, expression profiles of genes
and proteins, molecular interactions between biomolecules,
etc. Integrating these data leads to a better understanding of
cell-wide processes and ultimately contributes to greater
knowledge of the organization and functioning of the cell.

Frequently used in bioinformatics, the concept of ‘data
integration’ is imprecise and refers to several concepts.

� Integration through linking. In the context of systems such as
SRS (1) or ENTREZ (2), which provide means for querying
and navigating in multiple databanks, integration means the
exploitation of links that are, in most cases, cross references
between entries from different databases. This integration is
very general in scope, as it allows navigation through a wide
and complex network of links across heterogeneous data, but
it is also limited in functionality because it only uses static
relationships between individual entries.

� Integration through modeling. In ‘Systems Biology’ (3,4),
integration means using a formal language to specify
dynamic models of biological processes. In this context,
the integration is usually restricted to dynamic relations
between certain types of data. However, such an integration
is functionally ambitious as it aims at revealing new knowl-
edge through the emergent properties of the model.

Between ‘linking’ and ‘modeling’, the concept of neighbor-
hood was proposed in 1998 by Danchin (5). Danchin stated
that the availability of complete genomes and proteomes offers
the opportunity to move the focus from individual biological
objects such as genes or proteins, to the relationships (neigh-
borhoods) between these biological objects. As an illustration
of the concept, the approach was used to design a genome
viewer named Indigo (6). Indigo provided a set of graphical
views, which offered a visualization of different types of puta-
tive relationships among genes: physical proximity on the
chromosome, co-citation in the literature, similar usage of
the genetic code, etc. The user of Indigo could visually identify
similarities and thus correlations between different neighbor-
hoods. The integration capabilities of Indigo, while innova-
tive, suffered from severe limitations: the application did not
rely on a standard data structure, each relationship was ‘hard
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coded’ in flat files in a given format, and no measure of
similarity between relationships was offered.

We present here a new strategy for data integration, inspired
by Danchin’s neighborhood concept. Our approach makes it
possible to dynamically bring together heterogeneous infor-
mation available at the scale of complete genomes or pro-
teomes. It allows integration of broad datasets and aims at
revealing new correspondences between them.

The basic principles of this strategy are:

� use of sets of biological sequences (genes, gene products,
etc.) as a unified data structure;

� systematical conversion of available biological knowledge
into sets of sequences;

� storage of these sets in a database which supports a standard
import format;

� use of a probabilistic model to measure the similarity between
sets.

This strategy was implemented in BlastSets, a software which
allows the user to submit one or several sets in order to retrieve
from the database all the sets that are found to be significantly
similar. A Web interface has been developed and is publicly
accessible (http://cbi.labri.fr/outils/BlastSets/).

Although, several systems (7,8) use a measure of similarity
between sets of sequences defined on various criteria, we are

the first to propose to use this approach as a general solution
for the integration of bio-molecular data at the scale of the cell.

In the following, we explain the method in detail and we
present different uses of BlastSets which illustrate the rele-
vance and the power of the approach.

METHODS

In this section, we explain how sets of sequences can be
defined to capture different types of biological information
and how such sets are organized to form ‘BlastSets Classifica-
tions’. We then explain the mathematical methods used
to perform set comparisons in order to identify significant
similarities.

Defining sets of sequences

Schematically, sequences from an organism are grouped to
form a set when they share identical or similar values for a
particular attribute. Those attributes are defined using diverse
sources of biological information (see Figure 1 for detailed
examples):

� cellular process: set of genes which contribute to the same
biological pathway

Figure 1. Examples of set definitions for biological information in yeast (genes are identified using the systematic nomenclature). (a) SWISSPROT keywords: a set
contains all the sequences that are annotated with a given keyword. The sets are independent of each other and form a star graph. (b) Enzyme EC Numbers: each class
in the hierarchical classification of enzymes is used to define a set. This set contains all sequences that are annotated as being part of the class plus all the sequences
attached to the corresponding sub-classes. i.e.: the set of class 1.5.1 contains all the proteins in its sub-classes (sub-classes containing only one protein are not
represented here). The sets are hierarchically organized and form a tree. (c) Expression profiles: each node of the binary tree resulting from a hierarchical clustering of
expression profiles is used to define a set. This set contains all sequences from the corresponding branch. The sets are hierarchically organized and form a binary tree.
(d) Chromosomal localization: a set is defined for each node of an implicit lattice structure built on top of the chromosomal localization of genes. All possible sets
of adjacent genes are thus defined: from pairs to the complete chromosome. The sets are hierarchically organized and form a Directed Acyclic Graph (DAG).
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� genome features: set of genes’ neighbors on the
chromosome(s)

� experimental results: set of genes with similar expression
profiles

� physico-chemical property: set of proteins having similar
isoelectric points

� sequence annotation: set of proteins that share a common
keyword

We only consider genes coding for proteins and we do not
distinguish between genes and gene products in the set defini-
tion. This allows us to bring together information relative to
genes or to proteins.

Depending on the biological criteria, the definition of the
sets requires more or less processing. In a number of cases, the
set definition is rather straightforward:

� When sequences are found to form together a biological
object, the grouping of sequences is obvious: i.e. each protein
complex purified and identified by Cellzome (9) defines a set.

� Sequence attributes that correspond to discrete values, such
as a keyword or a structural domain, can be easily used to
define sets (Figure 1a): to each keyword or each domain
corresponds the set of all the sequences that share this
attribute.

� Systematic classifications provide collections of sets: e.g. EC
Numbers (10) classify enzymes in different classes and sub-
classes. We can see each class as a set of sequences having the
same type of enzymatic activity as shown in Figure 1b.

In the above examples, sets can be derived directly from the
original data. However, for other criteria, rules must be defined
to create the sets.

� One challenging case is when the criterion is a measure of
continuous values. If we look at the position on the chromo-
some of a coding sequence, we have a range of possible
values. In order to build sets, one can define a window of a
certain size, then slide this window along the chromosome
and build the resulting sets of adjacent genes. One problem is
that we do not know a priori the relevant window size to use.
The choice of the window size implies a choice in the level of
granularity used to aggregate adjacent genes. We can choose
to look at very small sets of contiguous genes like pairs or we
can consider large segments of chromosomes. The diversity
of the size of known operons shows that a fixed size is not
appropriate. In order to keep sets that cover all possible levels
of granularity from pairs to complete chromosome, we
propose a hierarchical aggregation of neighboring genes as
shown in Figure 1d.

� In order to derive sets from expression profile data, we choose
to rely on the hierarchical clustering (11) of the profiles. This
is one of the well-established methods for analyzing these
profiles. It results in a binary tree. Here again, there is no clear
rule that can be applied to retrieve from the binary tree the sets
of sequences that are significantly co-regulated, and thus
correspond to real biological signals. In order to capture as
much information as possible from this tree, we retrieve and
store the sets attached to all nodes corresponding to all granu-
larities in gene aggregations (Figure 1c).

The first step in our data integration strategy is to systematically
build sets as described above. The goal of this process is to

project into a unified data structure the largest possible fraction
of biological knowledge at the molecular and cellular level.

BlastSets Classifications

Sets, as defined above, are not independent entities: a set
belongs to a collection of sets that is derived from a particular
biological criterion. Furthermore, there exist relationships,
typically inclusion, between sets of a given collection.
Those relationships can be described in various types of
graphs: i.e. simple star graph (Figure 1a), trees (Figure 1b
and c) or lattice (Figure 1d). Actually, all the graphs that
can be required to describe the relationships among sets are
Directed Acyclic Graphs (DAG).

In order to keep track of these relationships, which cannot
be represented at the level of individual sets of sequences, we
introduced a new structure: ‘BlastSets Classification’.

Definition: ABlastSetsClassification ismadeof three elements:

� a biological criterion;
� a collection of sets of sequences;
� a DAG that describes relationships among the sets: in this

DAG, the nodes correspond to sets and the edges represent the
inclusion of the sequences of a node (target) into another
(source).

Set comparisons

In this section, we discuss only the principles of set compar-
isons and score significance. Full details on the mathematics
involved are provided as supplementary material online
(http://cbi.labri.fr/outils/data/blastsets/).

We use the hypergeometric distribution to compare two sets
of sequences and measure a ‘distance’ between them. This
method was used by (7,8,12) and proved to be simple and
efficient. We formulate this measure as the probability of
having at least the observed number of sequences in common
between two sets, that may differ in size, built over all the
possible sequences. We denote this probability as the P-value.

A P-value is considered significant (sets are similar) if it is
less than or equal to a certain threshold. Multiple comparisons
are performed as a set is compared to all the sets of a BlastSets
Classification. Moreover, the sets’ compositions are not inde-
pendent within a BlastSets Classification. Thus, we want to
adjust the P-value significance threshold to the considered
target sets. In (7,12), a Bonferroni correction is used. This
correction considers only the number of tests conducted and
not the actual target sets composition. In order to adapt the
cut-off to the considered target sets, we use the probability
distribution of the minimum P-values.

The minimum P-values probability distribution function is
defined for a BlastSets Classification and a query set size. For
a given P-value, it gives us the probability of obtaining a P-
value at least as good by submitting a random set of the same
size. Unfortunately, it is practically impossible to compute this
function, so we approximate it by sampling to obtain an
empirical function. Thousand Monte Carlo simulations were
used by (8) to build an empirical function. Further investiga-
tions and a proposition by Dufour (13) allow us to perform
only 500 simulations without loosing much precision (�1%).
The obtained empirical function provides an estimation of the
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probability of obtaining a P-value at least as good, so we
denote it the E-value. The E-value provides a measure of
significance of a P-value (the lower, the better).

From one BlastSets Classification to another, the number of
sets varies (see Table 1) as well as the distribution of the sizes
of the sets. The empirical function is thus computed for each
BlastSets Classification separately. Figure 2a illustrates that
for a given cut-off (E-value upper bound), the P-value sig-
nificance threshold depends on the BlastSets Classification.

The empirical function must be computed for all possible
sizes of query sets. Figure 2b shows that the P-value threshold
for a given cut-off (here the E-value upper bound is set to 0.1)
depends on the query set size. In this context, a Bonferroni
correction, which gives a constant P-value threshold depend-
ing only on the number of target sets, does not appear to
be appropriate.

SYSTEM

We have designed and developed a system that accepts
queries and returns a list of significantly similar sets.
A query is made of one or more query sets to be
compared to a selection of one or more target BlastSets
Classifications. A query set can be specified by submitting
a list of sequence identifiers, or by choosing a BlastSets
Classification. In the latter case, each set of the chosen Blast-
Sets Classification serves as a query set. To handle the multi-
plicity of aliases that are used to refer to each gene or protein,
we use AliasServer (14). This application provides services
for equivalent identifier conversions. The sequence identifiers
submitted by the user are automatically converted to the
identifier used internally in the BlastSets database: a check-
sum key computed from the sequence using the CRC64
algorithm.

The result of a query is a list of hits. A hit corresponds to a
significant similarity between a query set and a target set and
contains the following information:

� If the query sets comes from a BlastSets Classification, then
details on the node corresponding to the query set are given
(BlastSets Classification, node name, short description,
number of sequences).

� Details on the target set (BlastSets Classification, node name,
short description, number of sequences).

� The number of sequences in common between the query and
the target sets.

� The P-value, which corresponds to the probability of having
at least the observed number of sequences in common
between the query and the target sets.

� The E-value, which corresponds to the expectation level of
having at least as good a P-value by comparing a
random query set of identical size to the target BlastSets
Classification.

Table 1. BlastSets Classifications available in the database

Species Classification type Name No. of sets

S.cerevisiae Systematic classification KEGG metabolic pathways 131
Enzyme EC numbers 280
Funcat from the MIPS 175
Subcell from the MIPS 44
GeneOntology—molecular function 791
GeneOntology—biological process 1053
GeneOntology—cellular component 303

Expression data 27 microarray datasets from the Stanford Microarray Database (SMD) 150760
Physical interaction Cellzome proteic complexes 226
Keywords SWISSPROT Keywords 277
Total 154040

E.coli Systematic classification KEGG metabolic pathways 148
Enzyme EC numbers 274

Expression data 9 microarray datasets from the Stanford Microarray Database 36511
Keywords SWISSPROT Keywords 277
Total 37210

B.subtilis Systematic classification Enzyme EC numbers 248
KEGG metabolic pathways 146
GeneOntology—molecular function 263
GeneOntology—biological process 298
GeneOntology—cellular component 31

Expression data 2 microarray datasets from the Stanford Microarray Database 11168
Total 12154

Figure 2. P-value significance determination by the mean of empirical
probability distribution function of the minimum P-values (a) The empirical
distribution functions of the minimum P-values for two BlastSets
Classifications for a query of size 50. The solid line corresponds to a
hierarchical clustering of expression profiles, and the dashed line
corresponds to the GeneOntology molecular function branch. For a cut-off
of 0.1 and a query of size 50, the P-value threshold for significance is
8.1E�4 for the Gene Ontology whereas it is 6.2E�5 for the transcriptome
experiment. (b) Estimated significant P-value threshold depending on the
query set size for a cut-off of 0.1 for the Cellzome BlastSets Classification.
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A screenshot of the Web interface is shown in Figure 3; it is
publicly available at http://cbi.labri.fr/outils/BlastSets/.

To facilitate the loading of new datasets in the database, an
XML DTD has been defined for BlastSets Classifications
(available at http://cbi.labri.fr/outils/data/blastsets/). The use
of such a standard format makes BlastSets an open system:
new datasets can be easily added.

As in any complex project involving data manipulation,
system consistency and stability may be compromised by
the introduction of new data or by small modifications
made to the system. To ensure the reproducibility and the reli-
ability of the results, a consistency checking procedure has
been developed and is detailed in the online supplementary
material (http://cbi.labri.fr/outils/data/blastsets/).

At the time of writing, the database contains 55 BlastSets
Classifications concerning Saccharomyces cerevisiae (36),
Escherichia coli (12) and Bacillus subtilis (7). The database
content is summarized in Table 1.

RESULTS

In order to evaluate the relevance of the BlastSets strategy and
method, we tested whether it was able to reproduce results that

were obtained by expert annotation of an expression profile
experiment. We then tested our tool for its capacity to explore
the ‘expression profile neighborhood’ of genes.

Annotation of an expression profile experiment

We chose the microarray transcriptome analysis by Ferea
et al. (15), which reports significant altered expression levels
for several hundred genes from S.cerevisiae. The authors
identified four main biological categories for the genes
with altered expression: glycolysis, tricarboxylic acid
cycle, oxidative phosphorylation and metabolite transport.
This result was obtained by manual analysis of the micro-
arrays. Such analyses run up against two major difficulties:
the complexity of the task (here 4 experimental conditions
and about 6000 genes for S.cerevisiae) and the lack of objec-
tive measures for assessing the significance of the reported
observations.

The raw data (Log2 of Red/Green normalized ratio without
any filter) were collected from the Stanford Microarray Data-
base (16). The preclustering file thus obtained was filtered
against the list of 5786 validated open reading frames
(ORFs) from the GDR Genolevures (17). The hierarchical
clustering of the data was done using the Cluster software

Figure 3. Screenshot of the web interface query tab. Step by step: (step 1) the user has selected the species S.cerevisiae, (step 2) pasted a list of four sequence
identifiers (step 3) to compare to four BlastSets Classifications (step 4) with a cut-off of 0.1. This web page is publicly accessible at http://cbi.labri.fr/outils/BlastSets/.
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from Eisen lab (11) with default parameters. The sets
corresponding to all the nodes of the resulting binary tree
were used to build a BlastSets Classification that was then
loaded in the database. It was then used as a query against
a BlastSets Classification derived from the KEGG pathways
database (18) of S.cerevisiae (cf. Table 1). The results
obtained automatically by BlastSets are presented in Table
2. They are consistent with those reported in the publication:
glycolysis, tricarboxylic acid cycle and oxidative phosphory-
lation are among the pathways that are found to have most
significant hits with expression profile sets.

Interestingly, BlastSets reported some significant hits with
additional metabolic pathways (amino acid metabolism and
lipid metabolism) that were not mentioned in the original
publication (15).

The pathway that was found with the most significant
hit, corresponds to translation and the ribosome. This result
is not surprising: transcription analyses frequently highlight
the strong correlation of expression of the ribosomal proteins.
In 2002, Jansen et al. (19) while analyzing the relationship
between whole genome expression data and protein–protein
interaction, found that the subunits of permanent complexes
(maintained through most cellular conditions), such as the
ribosome and the proteasome, show significant coexpression.
In our results, the proteasome was also found to have very
significant hits (Table 2).

Mining BlastSets database: exploration of an expression
profile neighborhood

In a second experiment, BlastSets was used to explore the
expression profile neighborhood of gene sets. A bait set was
used as query and compared to BlastSets Classifications
derived from a collection of publicly available transcriptome
data loaded in the database. At the time of this experiment,
the BlastSets database contained 27 different yeast transcrip-
tome datasets (Table 1) from which nearly 150 000 expres-
sion sets were derived. As bait sets, we used different
samples ranging from 20 to 50 genes randomly selected
from a list of 128 validated genes which were assigned to
the ribosome in the KEGG database (18). As the different
random sets gave very similar results, we arbitrarily present
and discuss results obtained with a random set composed of
20 genes.

For each bait set, BlastSets identified a list of significantly
similar expression hit sets. Each of the 5640 genes found in at
least one hit set was assigned a score, which is its total number
of occurrences in all hit sets. Higher scores are expected for
genes that show a stronger correlation of expression with the
bait set. The genes were sorted by decreasing score. The results
are presented in Figure 4.

Roughly speaking, 3 sections can be defined based on the
shape of the histogram in Figure 4a: from rank 1 up to 100 are

Table 2. Expression profiles against KEGG pathways in yeast

Rank (on
a total of
1533 Hits)

Query node
name

Query
size

Target node
name

Target short description Target
size

Number of
IDs in
common

P-value E-value

1 NODE5526X 1982 13 Translation 210 169 1.56E-44 0
2 NODE5526X 1982 13.1 Ribosome 128 112 1.54E-36 0
3 NODE5490X 376 13.1 Ribosome 128 52 1.86E-29 0

. . . // . . .
21 NODE5310X 209 2.1 Oxidative phosphorylation 70 24 5.35E-18 0

. . . // . . .
28 NODE5525X 1361 5 Amino Acid Metabolism 223 107 3.47E-16 0

. . . // . . .
71 NODE5522X 621 14.7 Proteasome 32 16 2.97E-08 0

. . . // . . .
88 NODE5351X 119 6 Metabolism of Other

Amino Acids
59 10 2.48E-07 0

. . . // . . .
96 NODE5474X 900 1 Carbohydrate Metabolism 171 52 5.21E-07 0

. . . // . . .
166 NODE1602X 2 5.2 Alanine and aspartate metabolism 26 2 1.94E-05 0

. . . // . . .
168 NODE5505X 1164 5.15 Phenylalanine, tyrosine and

tryptophan biosynthesis
23 14 2.15E-05 2.60E-02

. . . // . . .
176 NODE5511X 194 3 Lipid Metabolism 49 9 2.85E-05 4.00E-03

. . . // . . .
181 NODE2298X 4 1.9 Glyoxylate and dicarboxylate

metabolism
14 2 3.25E-05 0

. . . // . . .
183 NODE856X 2 1.8 Pyruvate metabolism 34 2 3.35E-05 0

. . . // . . .

The table shows a summary of the results obtained when comparing all the (query) sets derived from a hierarchical clustering of an expression profile experiment
(15) against (target) sets derived from the KEGG pathways database.
Each line corresponds to a significant hit between a query set and a target set. The hits are sorted by increasing P-values. The table only shows the best
hits for each different pathway. The . . . // . . . correspond to omitted results that were chosen by applying the following rule (except for the first three rows
for illustration): we select hits for which neither the query node nor the target node was already part of a hit with a better rank. The full table (all results) is
provided as supplementary material (http://cbi.labri.fr/outils/data/blastsets/).
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found genes with high scores, between rank 100 and 500 the
scores are medium and after rank 500 are the low scores. A
careful analysis of the results provides a variety of interesting
observations.

� Obviously most genes that are annotated as coding for ribo-
somal proteins (in black and medium gray on Figure 4)
are highly concentrated in the high scores section (rank 1
to 100), which confirms both the strong correlation of
expression of the ribosomal proteins and the capacity of
the BlastSets strategy to efficiently fetch neighbors of a set
using a given biological criterion. In addition, the overall
order of the genes, especially in the high scores, is very
well conserved among the different random samples
independent of their size (data not shown).

� The Figure 4b shows a ‘zoom’ on the first 100 highest scores.
4 non-ribosomal genes are found within these high scores.
These genes are YKL056C, YMR116C, YNL119W and
YNL255C respectively rank 88, 90, 91 and 97 (n1, n2, n3
and n4 on Figure 4b). The cellular location inferred from
direct assay for these four genes is cytoplasmic, thus consis-
tent with participation in the cytoplasmic ribosomal activity.
YKL056C, YNL119W are annotated as hypothetical ORFs in
S.cerevisiae. From our results we predict that the proteins
encoded by these genes participate in (or interact with)
the translational machinery in S.cerevisiae. The third gene
(YMR116C—Asc1p) has been identified as a guanine
nucleotide binding protein that interacts with the translational
machinery in S.cerevisiae. It has been described as a
ribosome-associated protein with a nearly stoichiometrical
association with the ribosome (20). The fourth gene
(YNL255C—GIS2) has been described as participating in
an intracellular signaling cascade (inferred from genetic
interaction). The molecular function inferred from sequence

or structural similarity has been putatively assigned to
transcription factor activity. Again, our results indicate a
possible role closely linked to the ribosome itself or its
expression.

� Conversely, there are ribosome-annotated genes that are
‘rejected’ far from the high scores. Interestingly, this rejec-
tion occurs even for genes that were included in the query
sample. On Figure 4a, genes R1 (RPS24B/YIL069C), R2
(RLP24/YLR009W) and R3 (RPL22B/YFL034C-A) are
ribosome annotated genes that were present in the random
query set and have a medium score which indicates a probable
weak correlation of expression with the other subunits of the
ribosome. In addition, there are 10 ribosomal genes, not
visible on Figure 4a, that are rejected in the low or very
low scores. These genes are YFR032C-A, YPL249C-A,
YMR024W, YMR286W, YBR251W, YLR439W,
YDR462W, YNR037C, YJR113C and YGR076C, respec-
tively, ranked 1584, 1653, 1768, 2038, 2376, 2921, 3877,
3885, 4007 and 4303. YFR032C-A (RPL29) was described
as a non-essential gene that codes for a 60S ribosomal subunit
protein in S.cerevisiae. Its deletion leads to a moderate
accumulation of half-mer polysomes with little or no change
in the amounts of free 60S subunits (21). Its low score
indicates that it is probably not co-expressed with other ribo-
some-annotated genes which corroborates its non-essential
role. YPL249C-A (RPL36B) has been described as being part
of the 60S large ribosomal subunits (22), and the resulting
protein is bound to the 5.8S rRNA (23). Very little data are
available on the role of this protein to the ribosome in yeast.
Our results demonstrate that the expression of this gene
is impaired compared with the other ribosomal genes
investigated here. It may be interesting to look very carefully
at this gene to clarify its role in the translational machinery of
S.cerevisiae. All the last eight genes are annotated as being

Figure 4. Exploration of expression profile neighborhood using BlastSets A random sample of 20 yeast genes from the KEGG 13.1 pathway (ribosome) was used as
the query set to fetch hit (significantly similar) sets among nearly 150 000 sets derived from 27 different yeast transcriptome experiments. Each gene contained in at
least one hit set was assigned a score which is its number of occurrences in hit sets. The genes were sorted according to decreasing scores. The genes from the random
query set are in black, the other ribosomal genes are in medium gray and genes that are not annotated as members of the ribosome are in light gray. (a) Results for gene
until rank 1000; (b) Results for the genes in the first 100 ranks. n1 (YKL056C), n2 (YMR116C/ACS1), n3 (YNL119W) and n4 (YNL255C/GIS2) represent non-
ribosomal genes picked out within the highest scores. R1 (RPS24B/YIL069C), R2 (RLP24/YLR009W) and R3 (RPL22B/YFL034C-A) are ribosomal genes that
were present in the random query set and have a rather low score.
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mitochondrial ribosomal genes. The KEGG 13.1 pathway
(ribosome) contains genes both from the cytoplasmic and
mitochondrial ribosome complexes. The mitochondrial
ribosome clearly has a totally different behavior compared
to the expression of the genes composing the cytoplasmic
complex. One of these genes (YLR439W) was present in the
query sample and despite this, it ends up with a very low
score. This demonstrates the robustness of the BlastSets
approach.

DISCUSSION

We propose a general strategy for the integration of genomics
and functional genomics data. This strategy relies on a unified
representation of heterogeneous biological information in the
form of sets of sequences and a probabilistic measure of simi-
larity between those sets:

� The sets in the unified representation can correspond to
any observed biological relationship among individual
sequences: the set of proteins that form a complex, the set
of genes that belong to an operon, the set of enzymes that
contribute to a given pathway, etc. Sets can also be based
on an identical or similar value for a given attribute of the
sequences: the set of proteins that share a structural domain,
the set of genes physically neighbors on the chromosome, the
set of sequences that share a keyword in their annotation,
the set of proteins with similar isoelectric points, etc.

� The probabilistic similarity measure is based on the compo-
sition of the sets: it uses the hypergeometric law which gives
the probability that two sets independently extracted from a
population have a certain number of elements in common.
This measure allows us to identify correspondences between
sets that refer to different biological criteria (i.e. between
co-regulated genes and a particular functional class).

We have implemented this strategy in a software system
named BlastSets. The kernel of the system is a database
where sets are stored together with the corresponding biolo-
gical information. BlastSets offers the possibility to submit
one or several query sets in order to automatically compare
them to target sets contained in the database. The best similar-
ities between query and target sets are identified and returned
as results. Since good similarity scores (P-values) can occur by
chance, the similarity significance is determined by estimating
the probability that a given observed similarity score might be
obtained by chance with respect to the database content.

In order to validate our strategy, we used BlastSets to ana-
lyze public data on S.cerevisiae.

� In a first experiment, the tool was used to annotate results of a
transcriptome expression analysis (15). Expression profiles
were hierarchically clustered and BlastSets was used to find
which pathways, as defined in the KEGG database, corres-
ponded the most to clusters of putatively co-regulated genes.
BlastSets automatically identified the pathways that were
manuallydetectedbytheauthors.Thisfirst resultdemonstrates
that the approach can be particularly useful and time-saving
for the analysis and the annotation of experimental data.

� In the second experiment, we used a random subset of pro-
teins from the ribosome as a query set. BlastSets was used to
fetch similar sets from among 150 000 sets corresponding

to a hierarchical clustering of 27 expression profile
experiments. Most proteins annotated as ribosomal were
found to appear with the highest frequencies within the
similar sets. Interestingly, the tool was able to retrieve the
entire complex starting from an incomplete bait set. In addi-
tion, BlastSets identified proteins that were not annotated as
ribosomal and that were often found clustered with ribosomal
proteins. For those which had no functional annotation, this
result strongly suggests their involvement in the translation
machinery.

These first results demonstrate that sets of sequences can be
used efficiently to represent and integrate heterogeneous bio-
logical information. The method is particularly well suited for
the analysis of hierarchically clustered expression profiles.
Indeed, all the sets corresponding to all the levels of aggrega-
tion are considered. Thus, BlastSets will be able to detect a
biological signal wherever it is located in the tree, which
confers robustness to the method. This is the case for all
information that can be represented through hierarchically
aggregated sets such as the physical proximity of genes on
the chromosome (Figure 1d).

One of the strengths of this strategy resides in the use of an
open-ended unified data representation. As soon as biological
information can be attached to sets of sequences, it can be
loaded in the database via the standard XML format. Conse-
quently, the BlastSets database can be permanently enriched
with new data.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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financed by Université Bordeaux 2. The BlastSets project is
supported by funds allocated by the ACI IMPBio from the
French ministry of Research.

REFERENCES

1. Etzold,T., Ulyanov,A. and Argos,P. (1996) SRS: information retrieval
system for molecular biology data banks. Methods Enzymol., 266,
114–128.

2. Schuler,G.D., Epstein,J.A., Ohkawa,H. and Kans,J.A. (1996) Entrez:
molecular biology database and retrieval system. Methods Enzymol., 266,
141–162.

3. Tomita,M., Hashimoto,K., Takahashi,K., Shimizu,T.S., Matsuzaki,Y.,
Miyoshi,F., Saito,K., Tanida,S., Yugi,K., Venter,J.C. et al. (1999)
E-CELL: software environment for whole-cell simulation.
Bioinformatics, 15, 72–84.

4. de Jong,H., Geiselmann,J., Hernandez,C. and Page,M. (2003) Genetic
Network Analyzer: qualitative simulation of genetic regulatory networks.
Bioinformatics, 19, 336–344.

5. Danchin,A. (1998) La barque de Delphes—Ce que révèle le texte des
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